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Abstract

In this report, certain applications of the Cramer-Rao
bound to problems in radar echo time-of-ar.ival estimation are
presented. These applications encompass point target echos,
two-point target echos, and distributed target echos. With
respect to point targets and two-point targets, a modified Cramer-
Rao bound is derived and the results are substantially tighter
than those of the conventional Cramer-Rao bound. In applying the
Cramer-Rao bound to distributed targets, a sampled-data formulation
is presented and a numerical example corresponding to a wake

parameter estimation problem is given to illustrate the results.
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. Introduction

The familiar Cramer-Rao bound on the variance of estimates
is particularly useful since it is fregquently easy to calculate,
and is generally a tight bound for a wide class of estimators
when the signal-to-noise ratio is high (References {[l1]}-[4]).
Although there are c*her bounds also tight for small signal-to-noise
ratios, they are usually more difficult to obtain (References [1]
~[{6]). For this reascn, the Cramer-Rao bound is often used in radar

applications.

In estimating unknown (deterministic or random) parameters
from noisy measurements, there often exist nuisance parameters
(deterministic or random). 1In radar applications, the parameter
of interest may be the radar return time-of-arrival, or target
range, while the nuisance parameters may be signal amplitude and/or
phase. Although we often do not care to estimate these nuisance

parameters, the estimates of interesting parameters are nevertheless

BT BT SRR SRS RS NS Wy

dependent on them. In the usual application of the Cramer-Rao bound,
the marginal density of the measurement conditioned on the interest-
ing parameter is used so that the dependence on the nuisance para-

meter is never explicitly shown. This may sometimes result in

ontithd b N ieaios oDt

optimistic or even trivial bounds. 1In this report, we obtain a
modified bound by treating the nuisance parameters differently.
These modified bounds apply to a different, more restricted class

; of estimators than the conventional Cramer-Rao bound, but are
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useful in several radar applications where bounds tighter than the

ordinary Cramer-Rao bound are obtained.

The application of the Cramer-Rao bound (ordinary and modified)
for estimates of parametnrs of a random signal is, however, usually
difficult to obtain. Random signals often occur in practice, for
example, the radar return from the wake trailing a high speed re-
entry vehicle. Returns of this kind are often thought of consisting
of a large number of radar scatterers with their relative amplitude,
phase, and location being randomly distributed. They are, therefore,
sometimes referred to as distributed targets. It was shown (Reference
{ 2])that the Cramer-Rao bound for a random signal, or a distributed
target, may be obtained via the solution of a rather complicated
integral equation. Except for a few special cases, the solution
can only be obtained by using approximations. In tnis note, we
consider the calculation of the Cramer-Rac bound for a certain
class of random signals via a sampled data approach. The random
signal considered is a conditional Gaussian process (Reference {2])
with known time varying mean ard covariance functions. Since
in many radar applications, the data are often recorded and pro-
cessed in sampled form, the approach presented in this report is
believed to be practical and useful. A numerical example correspond-

ing to a wake parameter estimation problem is given.




This report is organized as follows. The modified Cramer-Rao
bound is described in Section 2. 1Its application to several point
targets is given in Section 3. The application of the modified
bound to the estimate of time separation of two closely spaced
signals is presented in Section 4. 1In Section 5 we present the
sampled data approach to the calculation of the Cramer-Rao bound
for distributed targets. A numerical example is included to
illustrate the result. Two appendices are attached. In Appendix A
the laborious derivation required to obtain the final results of
Section 4 is given. There are at least two limiting cases for dis-
tributed targets. Under proper conditions, a distributed target
converges to a known target or a Rayleigh target. Derivations to

explore these relaticns are given in the Appendix B.

2. A Modified Cramer-Rac Bound

In this section, application of the Cramer-Rao bound to the

case wherein there are nuisance parameters is discussed. By treating

nuisance parameters in an unusual way, we develop a modified bound.
We shall, for simplicity, discuss only the scalar estimation
problem although results are easily extended to the multiple

parameter estimation problem. Two cases are considered.

CASE 1. Nonrandom Parameter
Let a be an unknown parameter which is o be estimated based

on a set of observations r. Let the joint probability density

function (PDF) be known, and equal to

.
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b (R/a) (2.1)

The Cramer-Rao bound is a bound on the variance of any unbiased

estimator of a: a(r). It is:

[N

) -1 / 2 -1
250 [ 20 1 wa|{ - 21 R = 2
al” > ;;5 np, g/a,} = 4E{ | 535 np (R/a) =C(a) (2.2)
\

If the observation depends not only on"d but also on a
"nuisance" parameter, 6, then the bound also depends on the value

2 of 6. If 6 is random, with a known PDF, then the bound is calculated

[

using

p.(R/a) =/‘ p.(R/6,3) p.(6/a) 40 (2.3)

The bound then applies to estimators which are unbiased in a global
sense, but not necessarily for each value of 8. This leads to the

following alternative procedure:

Let a(r) be an estimator of the parameter a which is unbiased

for every value of the nuisance parameter 6. Then

. 3% > &, {cla/e)} (2.4)

e
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where C(a/8) is the Cramer-Rao bound calculated for each value of

6, and Ee denotes expectation over the random variable 6.

The above result is obvious. For any estimator which is
unbiased for all ¢, its variance 022’8) for each particoiar 6 is

bounded by:

e a22(8) > cla/e) (2.5)

‘ where C.a/6) is calculated using

- 5 -1
3
{-E — lnp£(5/6,a)] }

 9a

- -1 ;
. ) 2 3
{ - ('a—a lnp£(§/6,a)> ] } (2.6) .

Since the inequality holds for all 6 and since the estimate is

C(a/8)

-~ T s

[

ponitws- A

unbiased for all §, it follows that:

A2 _ 2 2
o” = E4 {Eye[ <a(£)"a> ]} {

= Ee{oa (e)} > Ey {c(a/e)} (2.7
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CASE 2. Random Parameter

Let a be a random parameter which is to be estimated based
on a set of observations r. Let the joint PDF of r and a be known,

and denoted by

(R,A) (2.8)

a is:

2 2 |41
={Er,a (aa lnp—r_’a(B,A)) (2.9)

If the observation depends also on a parameter 6, then the
bound also depends on the value of 8. If 6 is random, with a known

PDF, then one uses

p;,a‘&’” =f P_r_,a/(;(BsA/e) py(6) 4db (2.10)
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The bound then applies to estimators which are unbiased in a global
sense, but not necessarily tc estimators which are unbiased for

each value of #. This leads to the following alternate procedure:

Let é(g) be an estimator of the random variable a which is

unbiased for everyv value of the random nuisance parameter . Then:

2
N { 12.11
o 2 EG‘C(a/e)} 2 )

where

32 ~1
cla/9) = g-E[—-i lnpr’a/e (5.)\/9)]}

-1
3 2
= { E[(-a—a e, /6 (g,A/e)) ]} (2.12)

The proof follows that for nonrandom parameters.

Discussion:

The difference between our bounds and the standard Cramer-Rao
bound on the variance of estimators with a random nuisance parameter
is that our bounds apply to estimators which are unbiased for each
value of the nuisance parameter whereas the standard bound applies to

estimators which need be unbiased only over the ensemble. For
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ingtance, 10 the nonrandom parametes case, 1f a(r) denotes the

estiator, then the ntandard bLoand 13 sati13fied 1%

E, .(a) = fatR) p_ (R, ‘a) dRA- = a (2.13)

141

whereas 2ur bouni 1s satistice under the more restricted condition:

(2.14)

<%
1%
il
&

EE/; (a) = J‘a(y py,_.,(g/--.a)

for all

Certainly, one 1s not always concerned *hat an estimator b~
unbiased for all values 0of tne nuisince parameter. Howe oy, there
may be many applications where that property is desirable. For
instance, in estimacting the time-ot-arrival of a radar echo of random
amplitude, one would certainly like the estimato. *0 be unbiased for
all values of signal amplitude. 1f the *¢.. ~f-arrival is a nonrandom
parameter, this reguirement may be unreasonable if the signal amplitude
can be too small for reliable detection. However, such an unbiased
estimator can be conceived if the time-of-arrival is a random variable,
since 1ts a priori distribution provides an unbiased estimate if the

signal is not detected. A later set of examples treats this case.

The modified bound which we have presented has a natural inter-~

pretation. The uantity C(a/+} 1s the bound which is obtained under

P cruimgiiineyr st JRINAC: > O~ ops e




" R TTREY —n

e e g e

A e -

-

PN W ko e e w8 SR o

vy T T R RN, T~ P R e e ,——'mw‘

the assumption that the nuisance parameter § is known to the

estimator. The modified bound is obtained by simply averaging

this quantity over 6. One might expect that a bound obtained under

the asgsumption that the random nuisance parameter is always known

to the estimator would not be as tight as one which does not make

this assumption. However, this is not always the case, as our ;

examples will demonstrate.

There is another alternative when a nuisance parameter
is present. That is, to estimate jointly the values of both the
nuisance parameter and the desired parameter. This leads to the
Cramer-Rao bound for the multiple parameter case. To evaluate it
requires the evaluation of X%n(n+l) expectations of derivative of
logarithms of the joint PDF followed by the inversion of an n by
n Fisher Information matrix, where n is the number of parameters
estimated. Since, in practice, the estimator actually used is
frequently one which estimates nuisance parameters as well as the
desired parameter, e.g., a joint maximum likelihood estimator, such
a bound may be more representative of the actual situ«ation. Un-
fortunately, the difficulty in evaluating the bound increases as
the number of nuisance parameters increases and may become intrac-

table rather quickly.

3. Point Targets

In this section, we apply the modified Cramer-Rao bound to

several point target configurations. Let s(t) denote the low pass
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transmitted radar signal, the echo from a point target is therefore
the time delayed and complex modulated version of s(t). The complex

observation of the returned signal is:

r(t) = as(t-1) + w(t) (3.1)

where: s{t) is the complex signal envelope
Qa0

f Is(e) |? at = 1 (3.2)

-0

w(t) is complex white Gaussian noise with spectral

density NO/Z (two sided)
a is the complex signal amplitude

T is the unknown Time-of-arrival

For a fixed known value of a, the well known Cramer-Rao bound

for estimators of 1 is [3]:

a2
ot (E) > C (B) = 3 (3.3)

wherc E = ]a]2 = energy in the signal
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B = signal root-mean-square bandwidth in radians/sec
2 a? = .
B = -— [ .[ s(t+t/2)s (t-1/2) dt (3.4)
dt -

=0
For a LFM radar pulse, the relation between 8 and the instan-
taneous bandwidth B, in Hz, taking into account the weighting used

to reduce sidelobes, is B ~ 1.2 B.

In practice, the complex signal amplitude a may fluctuate
according to some random distribution. Suppose that the complex
signal amplitude is random with phase uniformly distributed over
[0,21] and energy distributed according to a PDF p(E). 1Ideally,
we would wish the time~of-arrival estimator to be unbiased for all
values of E. Following the discussion on the modified Cramer-Rao

bound, a bound on the variance of such an estimator is:

N

o d p(E) dE (3.5)
2 f E

T
28 o

Several target fluctuation models were studied by Swerling [7].

In particular, we consider the Swerling II and IV models.

3.1 Swerling IV Targets
If p(E) corresponds to a Swerling IV ("one-dominant plus

Rayleigh") amplitude distribution [7]:

. coniliie
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P(E) = 432 e Eo (3.6)

Eo
Eo = mean signal energy
then
2 1

2% > € = E, 52 (3.7)
N
o

Notice that the above bound is twice as large as that for
the known amplitude and phase case.
3.2 Swerling II Targets
1f, on the other hand, p(E) corresponds to a Swerling

II (Rayleigh) amplitude distribution [7]:

JE
E
1
p(E) =5— e ° (3.8)
o
E = mean signal energy

then, for this case in which low-energy signals are more likely

than in the previous case, the integral (3.5) for the bound diverges,

12
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i.e.,

N ® ~E/E,
o . e (3.9)
C = 5 lim - dE =
2B°E_ e+0
o €

We have therefore shown that no finite variance estimator of (non-
random) time-~of-arrival, which is also unbiased for all values of
signal energy, exists for Rayleigh amplitude distributions. For

the same amplitude distribution, the ordinary Cramer-Rao bound

exists, and is [2;:

= co (3.10)

Cne arbitrary remedy to this case is to only estimate target
range after a reliable detection of the signal. Another method,
which can be rigorously formulated, is to estimate the target range
only at the vicinity where the signal is likely to appear. This

leads to the following case.

3.3 Swerling II Targets with A Priori Information
Assuming that the time-of-arrival is random with a normal

a priori distribution with variance 0;2, the standard Cramer-Rao

TN W,
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bound is then:

(3.11)

where Cs is the bound of equation (3.10), i.e., without a priori

informaticn about T.

where

Our modified bound is:

>c = L /' —

2 lo] B2 u + €

Ng .
(3.12)

— l e——

E

o 2 2

2 — B o,
o

Figure (3.1l) shows the ratio of the modified bound (3.12) to

the standard bound (3.11) as a function of the parameter BoT. Thus,

the resolution of the signal improves relative to the accuracy of

the a priori information as the abscissa increases.

So long as the a priori variance is nonzero, the modified

bound exists and exceeds the standard bound except for low signal-

to-noise ratio and relatively accurate a priori knowledge. We

therefore infer that for the Rayleigh channel the modified bound

14
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i where time-of-arrival is a random variable.
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is usually tighter than the standard bound for estimators of the

g e et et

random time-of-arrival which are unbiased for all signal amplitudes.

4. Two-Point Targets - Length Estimation

Cornsider the radar application in which two scattering
centers are spaced closer the~ "+~ gignal resolution width. This

i situation occurs when one attempts to estimate the length of a target

[ NP

with only two dominant scatterers. Let the echo from the ith scat-
; terer be denoted as a; s(t-rl). The total received signal may be
-4 expressed as ]
y

s(t-rz) + w(t) (4.1)

rit) = ay s(t-Tl) + a,

i i s ¢ aaikle

-
- e T e

where a; and a, are the complex signal amplitudes. The parameter

4 2 :
.‘ to be estimated is the time separation of the targets, T=T1= Ty i

1

1 For fixed values of [a;| and lazl, a conventional way of evaluating 1

P

the Cramer-Rao bounds leads to the following bound [2].

£
PRSP

1 1 1
c_(&,,E,)} + (4.2) ‘
o'"1'72 282 E1 E2 ;
Ng No !
;
| where the E, = lai|2 are energies in the signals. This bound is
g‘ %. 3 obtained by assuming that the T, ani T, @ nonrandom parameters

: and the arq(al) and arg(az) are random, uniformly distributed

-
R

on (0.27), and applies to joint estimators of all four parameters.
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o It does not include the effect of interference between the

signals, hence is tight only if the signals are well resolved.

| To find the modified bound one first obtains the standard
' . H
i bound for fixed |a,| and la,i by evaluating and inverting a two s
. by two Fisher information matrix: %
P A
o i
g (:i.!nlzz/no )9_(._"-) .I 4;
4 . 1 1 1 \ 142 \E1/No ¥ Ep/Ny) g2 cosb ,
' Cla,,a,) = —5 +
| e o ) |
1
(4.3) i
| 1
o where 6 = arg(s;) - arg(az) :
i 52 1
plr) = —5 Io(0)] "
- |
plt) ==f s(t+1/2) s* (t-1/2) dt

o

= gignal autocorrelation function

o e —————
. .
P

Assuming that 6 is uniformly distributed in {0,2n] and obtaining

R

{' the modified bound by averaging (4.3) over 6 yield
o

|
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1 1
1 By + By
2 N_ N
c(E,,E,)) = —=2E e________.©° (4.4)
o 2 -
Jﬁ_ &(o(r) )
82
Normalizing the modified bound by the conventional bound, i.e.,
equation (4.2), yields .
C(El.Ez) _ 1
—_— = x vili (4.5)
C, (Eq,E,) Y1 - (g(rz)
B

In order to evaluate the above ratin numerically, a signal model

must be chosen. Supposc the signal auto~corrxelation function is

Gaussian-shaped

(q) = e-l/280)7 (4.5)

Bt

Letting £

normalized separation

and evaluating (4.5) yield

C(El,Ez) _
Co(E1.Ey)




One can obtain an even tighter bound by treating all four
unknowns, ice.,Tl,lz, arg(al) and arg(az) as parameters to be
estimated, evaluating the four by four Fisher information matrix,
inverting it, and tlen averaging over arg(al) and arg(az) to obk‘ain

the meodified bound.

This somewhat laborious procedure is carried out in Appendix

A. The result is:

(E1+E )No

27
1l /‘ v{o,T,0) 49
2ElEz 27 . [wz(o,r,e) - wz(r,r,e) coszé]

c'(El'E2) =
(4.8}

where

“y
( o) (o) plr)) b%-rz) sin® o
w TyeTaay 8- Is T + —

1’72 i [1-p2 (t,) cos? o1 (4.9)

The above bound normalized by the conventional bound
(eq. (4.2)), averaged over §, and using the Gaussian-shaped
autocorrelation function is shown in FPigure (4.1). Also shown

ig the ratio of eg. (4.7) which was more simply obtained by always

treating arg(al) and arg(az) as nuisance parameters. Notice that

nonm
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Standard Bound

. _Modified Bound
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Y

£ « (Time Separation) x (Signal RMS Bandwidth)

Fig. 4.1. Comparisuvin of modified and standard bounds on
variance of estimating the time-scparation of two interfering
signals.

bt it



)

when the separation is large (¢>3%, these three bounds are
identical; while when the sepa~ .cion is small, the modified bounds
are much tighter, especially when 2 is iess then unity. The modi-
fied bound obtained under the assumption that arg(al) and arg(az)
are to be estimated (eq. (4.8)) is only slightly tighter than that

obtained under the assumption that they are known to the estimator

B

(egq. (4.7)).

5. Distributed Targets

e

In this section, we turn our attention to a rather different
class of radar returns, namely, the distributed targets. One very
commonly known distributed radar echo is the wake trailing a re-entry
vehicle., Such signals alsc ¢ccur as a result of disturbances in

communication media. References (2] and [8] contain several examples

e it e St . ibiiil o s il . ol A

of random signals in radar and communication applications. Figure
(5.1) is a simple illustration of random signals contained in radar

returns.

Altr-ugh the basic formulation of the Cramer-Rao bound is the

IS SO

same for various target configurations (Section 2), the explicit

3clution of the Cramer-Rao bound for estimates of parameters of

a random signal is, hcwever, usually difficult o obtain. It was

J—

shown (Reference {2]) that the Cramer-Rac bounid for a random signal

myy be obtained via the solution of a rather complicated integral

equation. Except for a few special cases, the solution can only be

PRI e,

obtained by using approximations. 1In this note, we consider the
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We present a derivation of our main result in the Section 5.1.

A numerical example is given in the Section 5.2. A deterministic

i
;IS ;

i

!
‘ calculation of the Cramer-Rao bound for a certain class of random
«; : signals via a sampled data approach. The random signal considered
L is assumed to be a conditional Gaussian process [2] with known time
o varying mean and covariance functions. Since many radar data are

-,

. rﬁh‘ recorded in sampled form, the solution presented here seems to be
RN useful.
B
, ;g
i,
L

point target and a Rayleigh target are limiting cases of the dis-

tributed target. The derivation which shows this relation is pre-

sented in the Appendix B.

5.1 Derivation

y
M
4

Since the distributed target is a very different class of
target from those discussed in the previous sections, here we

|
|
1
y- } re-state the Cramer-Rao bound with a slight inconsistency in

notation:
Let "d' denote the parameter to be estimated. The Cramer-Rao

bound on the wvariance of any unbiased estimator of a can be expres-

|
\ sed as
0”2 ¢ = {E( [ 5 ok, wva)] 2) } ™
| : (5.1)
i“f ={ -E [ 2: In (py,, (Y/a))] }_l
|
a4t , 23
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where c;2 = variance of an unbiased estimate of a

Y = measurement process.

A distributed target is characterized by a complex scattering
function h(t,a) which is a conditional Caussian random process with

mean

E(h(t,a)/a) & M (t,a) (5.2)

and covariance function

El(h(t,a) - M (t,a) (h(u,a) - M (3,a)) /a]
(5.3)

H(t,a) §(t-u)

where "*" denotes the compiex conjugate and &( ) is the Dirac
delta function. 1In addition, we assume that the measurement
process Y of eq. (5.1) is at the output of a matched filter.

Let s(t) denote the transmitted signal, the returned signal before

the receiver is

w(t,a) = J/P s(t-x) h(x,a) dx (5.4)

The output of the matched filter is
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y(t,a) =fw(x,a) s* (x-t) dx + fn(x) s*(x-t)dx (5.5)

where n{t) is the receiver noise with Gaussian distribution, zero
mean, and one sided spectral density No. Introducting the signal

autocorrelation function
p(t-1) = st(x-r) s* (x~t)dx (5.6)

Equation (5.5) can be rewritten as

y(t,a) =fp(t-x) h{x,a)dx + fn(x) s* (x-t)dx (5.7)

The output process y(t,a) is a conditionally Gaussian random process

with mean

E(y(t,a)/a) = My(t,a) = Jf.p(t—x) Mh (x,a)dx (5.8)

and covariance function

S(ty,t,,;a) =f p(t-x) p(t,-x) H(x,a)dx + N_p(t;-t,)  (5.9)

Zn many radar and communication applications, the data at the




matched filter output are often recorded and processed in sampled
form. Let Yli and Y2i denote the data vectors representing the

sampled outputs from inphase and quadrature channels from the ith

set of measurements (or, a set of sampled data of the ith radar
pulse). Furthermore, it is assumed that the significant portion

of the signal energy is included in the data vector. The covariance

of Y.. is .
1]
S(tl,tlsa) S(tl,tz;a) .o s(tl,tM;a)
S(tz,tl;a) S(tz,tz;a) .« o0 S(tz,tM;a)
. . * (5.10)
R = . ° O
S(tM,tl;a) s(tM,tz;a) o v e s(tM,tM;a)
; for all i,j

where M is the number of samples in the data vector. The conditional

density for total N pulses can be expressed as
(5.11) )

2 N
1 T -1
P (Y = — -1/2 (r..=M ) ITR™A (Y, .M
y/a (¥/a) Zn|RDY {e"p / 21: 21: i3y (¥4 Y'}
1= =

where My is the vector with samples My(ti,a) i=1,..,M. Differentia-

ting the natural log of Py/a(Y/a) with respect to a yields

—



xl z . -1
‘ 3 _ =1 T (R ) _
: , ~—5a (lnlp, ,(¥/a))] = —3 z ; E {‘Yij M)T S (Y yM)

i i=l =i
(5.12)
aM
_ RGN Al
i 2(Yij My) R ( Ba)
. ) Squaring (5.12) and taking expectation yield
SR ) 2, |
. { - _° 4
x:{( 2 [intpy,,(¥/a))] ) , 3
s (5.13)
ol T ]
Co 2 oM M
o . _ -1 3R -1 Y
- =N Tr[ (R aa) ] v ( 5a> K ( Ba)
| ? where Tr[ ] denotes the trace of the enclosed matrix. To obtain 1
i ; the above results, the following assumptions and matrix identities i

have been used. 3

Assumptions

1) The data from the inphase and guadrature channels

© it S

are independent

U LN

2) For j#k, Yij and Yik are independent 1
. i
. Matrix Indentities i
'l T -1 '
! ' e y --M Y- -_M = i
! R ()
| 2) Efv..T K v..T K v..] = 2Tr[KRKR] + Tr2[KR] 3
¢ o ij ij ij ;
. -1
SRR IR
. where K 5a

'] d a zero vector

Al

|
!
|
{
I 27
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I

3) Tr[KR] = 0

The final result for the Cramer-Rao bound is

-1
cﬁz >c= 3 { Tr [(R'l 3% 2] + 2(2;-%) ' R-l(%i‘g-)}

(5.14)

This equation is the main result for the distributed target case.

We make the following remarks:

1) This formula is an approximate solution of the exact
formulation in Reference [2]. It is a valid approximation if the
data vector contains the significant portion of the signal energy.

This requirement can be easily satisfied in radar applications.

2) Since the data vectors are assumed independent, the above
result applies tc any unbiased estimators which process N pulses

(or data sets) incoherently.

3) In most communication and radar signal processing appli-
cations, the fading channel/fluctuating targets are modeled by using
a scattering function specified by Mh(t,a) and H(t,a). The Cramer-
Rao bound is computed by first evaluating equations (5.8) and (5.9)
to obtain My(t,a) and S(ti;tj;a). This step may require numerical

integration.

4) The above result is explicitly shown for time domain

data. Due to the duality property between time and frequency, it
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may be applied to frequency domain data (e.g., estimating the
Doppler spread of a fading signal) in a straightforward

manner.

5) This result can be extended to the multiple parameter
case by computing each terms of the Fisher information matrix

(Reference [1]) with the same approach as above.

5.2 Example

In this section, we consider an example which applies

to targets with zero mean and Gaussian-shaped covariance functions,

i.e.,
Mh(t,a) = My(t,a) £ 0. for all t {5.15)
and
1 (t-a) 2 ,
H(t,a) = E ————— exp y-1/2 — {(5.16)
V21 o < o

where E is the signal energy. Notice that the parameter to be
estimated, a, is the center of H(t,a). Assuming that the radar
signal is a LFM pulse, the signal autocurrelation function of a

Hamming weighted LFPM pulse can be approximated by

t2

2
- = (1.226B) '
o(t) = e {5.17)
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where P is the LFM bandwidth in Hz. Notice that with the above
assuniptions, eguation (5.9) can be evaluated analytically. Define
the following peak signal-to-noise ratio (S/N) at the receiver
output by using equation (5.%).

oo

/N = - f e |2 H(x,a)ax (5.18)

— LD Q,‘ B

Using the above assumptions, the Cramer-Rao bcund normalized
to the inverse of B/ N is evaluated with respect to the target sacond
cential moment (Gh) normalized to the inverse of B where N is the
number of pulses. The results for §/N = ¢,8, and 16 dB's are shown
in Figure (5.2). Notice that the estimate standard deviation degrades
rapidly for random targets with large time-spread (Gh). When the
time-spread becomes small, the Cramer-Rao bound is asymptotic to
that for a Rayleigh target.

The above result can be extended toc parameter estimates of
a RV wake. Results of Figure 5.2 correspond to the time-of-arrival
estimation of wakes with Gaussian shaped RCS. For wakes with any
other shapes, one simply replaces H(t,a) by the underlying model
corresponding to that shapz where ' is the wake parameter to be

estimated.

6. Summary and Conclusions

Certain applications of the Cramer-Rao bound to problems in

.l R
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Fig. 5.2. The Cramer-Rao bound for estimating the mean of a
. time-spread target.
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radar echo time-of-arrival estimation have been presented. These
applications encompass point target echos, two-point target echos,

and distributed target echos.

With respect to point targets, application of the modified
bound on the variance of time-of-arrival estimates, valid for
estimators which are unbiased for every value of signal amplitude,
shows the following:

a. the bound for Swerling IV targets is twice that
for nonfluctuating targets having the same mean

signal energy.

b. No such estimator has finite variance for Swerling
II targets unless there is a pricri information
regarding the cime-of-arrival. When such information
is available, the resulting modified bound, equation
(3.12), is usually tighter than the standard bound

commonly used.

When applied to the problem of estimating the apparent extent of

a two-point target, the standard Cramer-Rao bound, equation (4.2),1is
independent of the target extent; whereas the modified bound,
equation (4.4), does display the effect of interference between the
two point scatterers and is uniformly tighter than the standard
bound. Results shown in Figure 4.1 indicate that the effective

resolution of a signal, for this purpose, is about 30% to 50% of
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its reciprocal RMS bandwidth in radians/sec. This corresponds to
25% to 40% of the reciprocal instantaneous bandwidth for a LFM

pulse.

In applying the Cramer-Rao bound to estimates of the parameters
of echos from distributed taigets, a sampled-data formulation was
used. The general result, equation(5.14), for the scalar case was
applied to the case wherein the target is random having a scattering
function which is a Gaussian-shaped function of range. Results of
this analysis, given in Figu;e 5.2, show the degradation of the
time-of-arrival estimate as the time-spread of the target echo

increases.

Although our discussion has centered on the analysis of accuracy
of time-of-arrival eétimates, the results are equally applicable
to problems.iﬁ estimating Doppler shift, recognizing the time-
frequency duality; Thus, all of 6ur analyses can be made to apply
to Doppler shift estimation by simply interchanging frequency and
time variables. Similarly, the results are applicable to angle-of-
arrival estimation problems for a linear aperture by appropriately
reinﬁerpreting the tiﬁe variable as off-boresight angle and the
frequency variable as distance aloﬁg the aperture, measured in

wavelengths.
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APPENDIX A

Derivation of Equation (4.8)

Equation {4.8) was obtained by evaluating and inverting
the Fisher Information watrix by treating TysTas arg(al) and

arg(az) as parameters. Restating the received signal

r(t) = als(t-rl) + azs(t-'rz) + wit) (B.1)

The log of the conditional density function is

-1 Y . 2
lnp_ = —Egli [rie) - ajslt-t)) - a,s(t-1,) |% &  (B.2)

Evaluating partial derivatives of lnp_. and taking expectations

b

yield

2
9 lnpr

E -—3:—2- =2Iai
i

12 50)

2
9" 1lnp

: : == i : p (- 8 ; for i# j
E( ariarj) 2l31| iajl p(c) cos # 3

t
(=]

(?zlnp )
Bl
ari aei

ot i ek v el s i e bk s e, mmiaad.
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azlnp )
Ef——X-
ariaej

-zlaiilajl b sin o ; for i#j

(azlnpr) o]
E{f———— -2}a,
38.2 i

1

2%1np_
E -5-51-—373— = -Zlaillajl p{1) cos 8 ; for i¥j

where 8 arg(al) - arg(az)

p(1) signal autocorrelation function

/s(t) s*(t-1)dt

Te

1
P

A b

Q
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©
L

Using the above results, the Fisher Information matrix is:
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-iallz (o) |al[]a2|6(|) cos 0 layllay|8(1) sino
S : -1a,|%to) la)| ] 1) sino 0
|a1|132|p 1) cost la, 1 kol :
- 2
alion . ,
0 lajlla, ety sind laq | la,lla (1) cosn
. 2
lalllazlp(r) sino 0 ]alllazth} cos |32|
L ) 1
(B.3) 1
Since we are only interested in evaluating the bound on t, one S
need not invert the complete matrix. Instead, we will apply the !
following matrix identity to find the inverse corresponding to ‘1
1
the upper 2x2 portion of F. (}
Matrix Identity
Given
A A
A = 11 12
Aol Ba2
B B
A-l - B = 11 12
Ba1 Ba2 ,

where Aij and Bij are partitions of A and B, respectively, then




o S L N

Byp = (B ~ ARy, TAy)

Applying the above identity to matrix F yields

-1
Fi1 = F12Fp0 "Fpy
_ , .2 s " -, -
=] (-6(0)_ p(T; == e2 |2, | lazl(b'('cﬂ p(T;p (T)S;n ? Yeose
1-p"(1)cos”6 1-p% (1) cose

= 2
N
o
«2 .2 .2 s
L Iall Iazl(b('f)-i- p(T;p (T)s;n e)cose Iazlz(_b'(o)_ b (_'zf)Sln 62
- 1-p” (1) cos”8 1-p" (1) cos™6
(B.4)
K .2
om0 = - 5o+ p(ty)y "(r,) sin®0 ) 5.5)
172 1 l-pz(Tz) c052 5

Equation (B.4) becomes

-1
Fi; - Fip Fpy  Foyy

lallz v(0,1,0) IalIIaZ|W(T,T,6) cos ﬂ

(B.6}

p(0,T1,9)

2
|al||a2|1MT,T,e) cosf ]azl

o
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Its inverse is

-1
(F117F1oFoy °F

la, 1%v(0, T, 0)

-lalllazl w(T;T,e) cosb

-la; llay|ylt.7,0) cos 8

|a1|2W(OIT16)

2|al|2|a2|2 (WZ(O,T.G) - wz(T,T,e) cos 0)

The bound on oi is therefore

o > ' (E),B,,0)

(E1+E2) P(0,T,0) + 2V EjE, v(1,T,8) cosé

(B.7)

(B.8)

N
2
2

B.E. [02(0,7.8) - ¥2(t,T,0) cos

172

2e ]

where El=|al|2 and E2=|azl2 were used. The modified bound is

obtained by averaging C'(El,Ez,e) over 9, i.e.,

1 23

27

C'(El,Ez) =

38

C'(El,Ez,e) de (B.9)
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It however, can be shown that

(B.10)
2
v(t,7,8) cosé
doe=0
° [WZ(O.T,B) - wz(r,r,B) cosze]
5
because 1
ylt,T,0)
[wz(O,T,G) - wz(T,T,G) cosze] j
is an even and positive function of 8. Using this property,
equation (B.9) becomes
27
C'(E,,E,) _ o (_.._E1+E2)_1_ / p(0,7,08) db 5
, =
1772 2 E.E, 2@ s [wz(o,T,e) -¢2(T,T,9) cos“ 8]
(B.11)
This is equation (4.8).
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APPENDIX B

Limiting Cases of Distributed Targets

In this appendix, we prove the convergence of the distri-
buted targets to two limiting cases, namely, a targét with known

amplitude and phase and a Rayleigh target.

B.1 A Target with Known Amplitude and Phase
Assume that the target has a deterministic scattering
function with known amplitude and a denotes the time-of-arrival

of the returned signal. This implies

M (t,a) = YE & (t-a) (B.1)

and

H(t,a) =0 (B.2)

where E is the signal energy. Using the above in (5.8) yields

My(t,a) =VE p(t-a) (B. 3)
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. Substituting the above in (5.14) yields the following result for

noncoherently integrated N pulses.

Eﬁi i C(point target) = 1%— . (B. 4)
o <= it * R4y )

where t% MY . When the number of samples in M‘i is large, then

M "R ™M — 2 =(signal r.m.s. bandwidth in
rad/sec)2 (B.5)

The above bound converges to the Cramer-Rao bound for a known

. target (Reference [3] or Section 3 above).

B.2 A Rayleigh Target

f' A Rayleigh target satisfies the following properties

) Mh(t,a) = (B-G)

H(t,a) = E §(t-a) (B.7)

4
et

where E is the target energy. The Cramer-Rao bound then becomes
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C(Rayleigh Target)

where R = -E(y YT+ Y QT)

P = [p(ti—tj)]

P (tl-a)

p (tz-a)

*
.

p (tM-a)

(B.8)

The inverse of R can be expressed as follows by a simple

application of the matrix inversion lemnma.

-1 _ 1
R =
(o]

[P'l—p-ly (YTP'ly + N_/E)

-1 T
Y

P-ﬂ (B.9)
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We will restrict the number of samples, M, to be an odd integer.
When M is even, the modification to the arguments to follow is
straightforward. From the definitions above, the (ggl)th rov

(and column) of P is .Y. Other rows/columns of P are just multiple
shifts of Y. In addition, the center element of Y is unity and that
of ¥ is zero. Let g denote a column vector with all elements

equal to zero except the (M%l)th element which is equal to one.

Then

Pq (B.10)

<
1l

or

q="P ¥y (B.11)

Using the above transformation in (B.9) and after some manipula-

tions one obtains

Rl = L [p'l - U] (B.12)
[o]

g = SE [P-l(;f Y4y YD -uy YT+ y YT)] (B.13)

-
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where U is a (MxM) matrix with all the elements zero except the

center element which is equal to 1/(1+N0/E).

Squaring (B.13) and after some manipulations one obtains

' 2 1
C(R . _ 2{E/N) 1
ayleigh Target) = N (E/NO) o} 7—;:T° (B.14)
Y [

When the number of samples is large, then
Ty~ g? (B.15)

The above bound converges to the Cramer-Rao bound for a Rayleigh

target (Reference [2] or Section 3 above).
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